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Upper Limb Redundancy Resolution Under Gravitational
Loading Conditions: Arm Postural Stability Index
Based on Dynamic Manipulability Analysis

Yang Shen, Brandon Po-Yun Hsiao, Ji Ma, and Jacob Rosen

Abstract— Resistance training may be considered as one
promising approach for improving the motor capabilities of
post-stroke patients. A successful introduction of this depends
on the proper resolution of human arm redundancy under
gravitational loading. The spatially heterogeneous changes of
the human arm swivel angle (which represents the upper limb
redundancy) are studied under different loading conditions,
the effects of which are incorporated into a modified dynamic
manipulability ellipsoid model. A new scalar index describing
the arm postural stability (APSI) is then proposed. As part of
the experimental protocol, ten (10) healthy subjects performed
multiple reaching tasks with different weights mounted on
the forearm. Kinematic data was collected via a ten-camera
motion capture system and the corresponding APSI was cal-
culated for each task. APSI is found to have a strong linear
correlation with the swivel angle under loading conditions.
Furthermore, the data suggest that the swivel angle may serve
as an indicator of arm postural stability and task difficulty.
The results of additional experiments conducted with three
(3) subjects indicate that the external loads could deteriorate
the arm’s control performance in tasks like line tracing (root
mean square deviation from straight lines). These findings may
be applicable to robot-based (exoskeleton) resistance therapy,
assist-as-needed gravity compensation, and human-like motion
control of humanoid robotic systems.

Index Terms— Redundancy resolution, human upper limb,
rehabilitation robotics, manipulability, resistance training.

I. INTRODUCTION

A. Background

Stroke is one leading cause of severe long-term disability
[1]. Among different post-stroke rehabilitation strategies,
resistance training like coupled bilateral load exercises have
shown positive evidence in improving motor capabilities of
the impaired upper limb and additional investigations are
needed [2], [3]. On the other hand, rehabilitation robots
like the exoskeleton system shown in Fig. 1 have been
developed to automate the training process by providing con-
trollable and repetitive motion [4], [5]. Surprisingly, although
resistance controllers have been reported in manipulanda-
like training devices, no robotic exoskeleton has this feature
available [6]. To the authors’ knowledge, this is because:

o Unlike manipulanda devices which are manipulated us-
ing hands, multi-link exoskeletons usually have multiple
contact points with the human arm. The redundancy
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Fig. 1. A subject operates the EXO-ULS, a dual-arm exoskeleton system
developed in the authors’ lab, with seven degrees of freedom (7 DOFs) and
one hand gripper on each side, to perform tasks in virtual reality.

and temporal/spatial synergies existing in human arm
movement bring more uncertainty and complexity.

« Many rehabilitation exoskeletons are originally devel-
oped to provide assistance rather than resistance (e.g.,
pre-defined trajectories). To achieve good human-robot
interaction transparency, joint torque output capabilities
are often compromised by system backdrivabilities.

Given that both the human arm and exoskeleton have a
redundant degree-of-freedom (DOF), one question that needs
to be answered for achieving high human-robot transparency
in resistance training is whether external resistance changes
the natural redundancy resolution strategy of the human arm
and thus provides referential information to the exoskeleton
controller. Although applications of virtual reality could
visualize different force directions, this study, as a starting
point, considers external loadings as the only resistance since
additional weights deteriorate performance in activities of
daily living (ADLs): intuitively, swiping cards, rotating a
doorknob, and waving hand become more difficult when a
heavy bag is hanging on the arm.

To quantitatively characterize the effect of additional load-
ing, a modified dynamic manipulability ellipsoid is used.
Traditionally studied in robotics research, the manipulability
models have been applied back to human motion analysis and
proven effective. Table I provides examples of past research
ranging from rehabilitation robotics to ergonomics. However,
no study on upper limb considered the effect of gravity when
using a manipulability model.
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TABLE I
EXAMPLES OF RESEARCH USING MANIPULABILITY MODELS

[ Anatomical Interests || Example Studies

| Manipulability Models | Resistance/Loads |

Applications |

Sasaki et al., 2010 [7] MFE, FP N Wheelchair Operations
Upper Limb Jacquier-Bret et al., 2012 [8] DME, FP N Upper Limb Movement Capabilities
Tanaka et al., 2015 [9] HFM N Operational Comfort
Walsh et al., 2006 [10] N/A Y (Loads) Load-Carrying Augmented Exo
Lower Limb Gordon et al., 2009 [11] N/A Y (Loads) Hip Kinetics & EMG
Yu et al., 2012 [12] MM, ME N Assistive Mechanism Design
Gupta et al., 2008 [13] MM N Wrist Rehabilitation
Hand/Fingers Valero-Cuevas, 2009 [14] MFE, FP N Neuromuscular Control
Endo, 2015 [15] MM, ME N Smartphone Touch Operations
B. Main Contributions X=Jg=JM 'T+%, 4)

o For the first time, this paper quantitatively discusses
the spatial heterogeneity of human arm redundancy
resolution (swivel angle) due to gravitational resistance;

e A new scalar arm postural stability index (APSI), is
proposed. Its high correlation with swivel angles is ob-
served when additional loads are present. We conjecture
that the swivel angle under loading conditions may work
as an indicator of arm postural stability/task difficulty.

The rest of the paper is arranged as: Part II gives detailed
mathematical modeling of a 2-link 4-DOF human arm; Part
IIT describes the experiments including two tasks; Part IV
provides results and discussion; Part V concludes the paper.

II. MODELING
A. Modified Dynamic Manipulability Ellipsoid

First proposed by Yoshikawa [16], the manipulability
measure (MM) and its visualization - the manipulability
ellipsoid (ME) have been modified and extended to versions
like the “dynamic manipulability ellipsoid (DME)” [17],
the “manipulability force ellipsoid (MFE)” [18] and the
“manipulability velocity ellipsoid (MVE)” [19]. Considering
the effect of loading as well as the relatively low arm moving
speed during post-stroke upper limb rehabilitation training,
the authors adopted and extended a modified DME model
[20], the derivation of which is provided as follows.

First, a serial (with actuators at each joint) manipulator’s
dynamics could be described as:

M(Q)nxniinxl +C(q,('l)nxl +g(q)nxl +JT(Q)nxrnfmxl = Trzx;

1
where the torque vectors M(q)nxnlnx1, €(q,q),y; and
g(q),,, are inertia, Coriolis/centrifugal, and gravity-related
terms, respectively. J7 (q),xm is the transpose of Jacobian
matrix linking end-effector force vector £, 1 and joint torque
vector Tpx 1. J(q)mxn also links joint space (n-DOF) velocity
with task space (m-DOF) velocity:

mel - J(q)mxn(lrlxl (2)

A non-redundant, unconstrained stationary assumption (m =
n,q=0,f=0) simplifies (1) to (3), and the time derivative
of (2) to (4).

Mi+g=1 (3)

where:
X, =—JM 'g (5)

represents the translation of ellipsoid center away from orig-
inal end-effector position. To the authors’ best knowledge,
this translation has never been quantitatively analyzed or
applied in previous related research, although it could help
determine if the arm wrist is already out of the dynamic
manipulability ellipsoid and if making gravity compensation
necessary. Details are discussed later in this section. Histori-
cally, for simplicity researchers assume that the manipulator’s
torque capability could be normalized using T=T7"'7, T =
diag(Ti max, ---, Tamax) as the scaling matrix and represented
by a unit sphere (Euclidean norm) in joint space (6) and then
a distorted/rotated ellipsoid could be calculated and visual-
ized in task space (7), indicating the feasible acceleration
directions and magnitudes.

tTE<1 (6)
x+IM )T Tor ' (x+IM 1g) <1 (7)

where:
Q=MT"*M (8)

In this study, the 2-link 2-DOF non-redundant robotic manip-
ulator model example in [17] is extended to a 2-link 4-DOF
redundant human arm model, and an index indicating the
arm postural stability is later proposed in II. B.

Illustrated in Fig. 2, following the Y-X-Z rotation or-
der at the center of the (right) shoulder, the elbow
and wrist joint positions P = [Pe,Py] are calculated in
the base frame (9), with g; to g4 representing shoulder
extension(+)/flexion(-), shoulder adduction(+)/abduction(-
), shoulder internal(+)/external(-) rotation, and elbow
extension(+)/flexion(-), respectively. L; and L, represent the
lengths of upper arm and forearm respectively. For simplicity,
c-:=cos(q-) and s- := sin(q-):

—slc2L;  —(s1s2s3+4clc3)s4Ly —s1c2(Ly 4 c¢4Ls)
P= s2L4 —25354Ly + s2(Ly 4 Lyc4)
—cle2Ly  —(cls2s3 —s1c3)s4Ly — c1c2(Ly + c4L;)

©)
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Fig. 2. The DMEs of a 2-link 4-DOF arm: (a) with loading, 0 < s < 1;
(b) with loading, s < 0; (c) no loading, s = 1. A local coordinate system
for DME is built on XpyE, Ypme and zpyg, along major, intermediate, and
minor axes respectively. The DME’s size/orientation/position change with
arm configurations and loading.

Due to the redundancy, the dynamic manipulability ellip-
soid (10) uses a weighted pseudoinverse of Jacobian J =
QT (JQ1JT)~! (with J34 detailed in Appendix):

(k+IM"g)T T QIh(k+ M 'g) < 1 (10)

This represents the modified dynamic manipulability ellip-
soid for a redundant 2-link 4-DOF human arm in its 3-
DOF task space. Any vector starting from the wrist and
ending within the ellipsoid visualizes an acceleration (with
magnitude and orientation) that the arm could achieve. As
the ellipsoid center moves under loading conditions (5), once
large enough loads are applied to the arm the ellipsoid no
longer encompasses the wrist. In this case, the wrist loses the
ability to move in at least half of the directions, and the arm
configuration is theoretically no longer stable. To quantify
the change from stable (no loads, ellipsoid centers at wrist)
to unstable (large loads, ellipsoid no longer encompasses the
wrist), we propose a scalar index below.

B. Arm Postural Stability Index (APSI)

A singular value decomposition (SVD) on the core of
(10), N = ]g QJ'}Q_ provides three eigenvalues (0723, which
determine the ellipsoid size and volume used as traditional
manipulability measure) and the corresponding eigenvectors
which determine the ellipsoid orientation. Using the trans-
lation equation (5), any arm configuration is labeled with
a scalar index € (—oo,1] shown below (11). The index is
proposed to quantify arm postural stability (i.e., APSI) when
loads are present:

APSI =1— \/(DMEPW.’x/a)2 + (DMEPW,y/b)2 + (DMEPW‘Z/C)Z
(11)

where a=1/,/01, b=1/,/0; and ¢ = 1/,/03 are the semi-
axis lengths of the DME. The wrist position in the DME

coordinate frame, PMEP,, is calculated by (12):

DMEPW — R*l(_ig) — _RflJMflg

(12)

where R33 is a rotational matrix based on the eigenvectors
of N. Geometrically, the APSI represents the normalized
distance to ellipsoid boundary. If APSI <0 (Fig. 2(b)), the
configuration is theoretically unachievable or unstable as the
wrist position is out of the ellipsoid and only a small portion
of feasible acceleration directions is left. If 0 < APSI < 1
(Fig. 2(a)), the wrist is within the ellipsoid and thus the
configuration is achievable. As the APSI gets closer to 1, the
arm is supposed to have higher postural stability, e.g., APSI
=1 in Fig. 2(c), when loading is not considered. Notice that
the units of the DME coordinate system are different from
those of the Cartesian one. For visualization purposes, the
DME coordinate system is scaled. Therefore, one could tell
if the DME encompasses the wrist only by the method given
in (11), rather than by visual comparison.

C. Parameter Estimation

To reduce interference in natural arm movement, loads
will be applied on the forearm only, with the center of
mass (CoM) located Ly from the elbow. The upper arm
and forearm masses are mj; and my respectively. Estimated
from [7], [21]: Lo = 0.3m, my = 2.44kg, my = 1.40kg,
T = diag(35,50,30,20)Nm. Based on [22], the anatomical
joint angles (in deg) are limited by: g1 € [—120,0], g2 €
[—100,20], g3 € [—40,60], and ¢4 € [—130,-10].

III. EXPERIMENT
A. Subjects

Ten (three females and seven males) healthy, right-handed
adults participated (mean =+ s.d.; age: 22.50 £ 2.59y, weight:
66.70 £+ 8.31kg, height: 174.60 £+ 8.30cm). All ten accom-
plished Task I; three of ten (#1-male, #2-female, #7-female)
were randomly selected to accomplish the additional Task II.

B. Setup

Fig. 3(a) provides an overview of the experiment setup.
Based on the subjects’ average range of motion (ROM) in
the task space, the targets are evenly positioned in a reachable
3 x 3 matrix, parallel to the subject’s frontal plane, at two
different distances (close and far), marked on the ground
(same to all subjects). The subject, wearing reflective markers
on hand, elbow and shoulder, is asked to sit against the
backrest of an armless chair to constrain the movement of
his/her trunk. 3-D kinematics of the right upper limb is
recorded at 100Hz by ten cameras of a motion capture system
(Vicon, UK).

C. Task I (Reach-Out Arm Posture)

Redundancy resolution remains an open question, espe-
cially when with loads. Illustrated in Fig. 3(b), if one keeps
the shoulder and wrist positions unchanged, s/he could still
change the elbow position to some extent, along a circle
perpendicular to a line connecting the shoulder and wrist.
This redundant DOF, represented by an angle swiped by
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Fig. 3. (a) Experiment setup: one subject is using a stylus to accomplish
Task I & 11, the targets (white) are positioned so that the x-axis on right
shoulder points to the center of 3x3 target matrix; (b) Swivel angle (Task
I): looking from shoulder to wrist, positive swivel angle starts from lowest
elbow position counterclockwise (i.e., elbow rotates away from the body);
(c) Target (center) and sub-tasks (Task II): the subject has finished the
subtask from center to (0,-1,-1) direction. The targeted path is later added
for image processing and not shown to subjects. The deviation is calculated
from center to inner circle only.

the elbow and starting counterclockwise from the zero point
where the elbow is lowest in Cartesian space, is called
“swivel angle”. Each subject is loaded with three different
weights: 0, 2.72, and 4.54kg (= 0, 6, and 10lb). This is
done by wrapping weight adjustable sandbags (CAP Barbell,
USA) on the subject’s forearm. The subject is asked to rest
his/her right arm on his/her lap and once s/he receives a
“start” instruction, reach and touch the target with a stylus
(gripped between forefinger and middle finger) using elbow
and shoulder movements only, hold for 3 seconds and rest
the arm back. After a 10-second-break, the subject moves to
the next target and repeats the above until all nine targets
are touched. A different load is then applied. Once all three
loads are tested, the subject moves to the other distance. The
swivel angles at the targets are individually calculated, based
on the marker positions. After each session, a 10-min-break
is provided.

D. Task II (Arm’s Control Performance in Drawing Task)

Similarly, with two different loads: 0 and 2.72kg (= 0
and 6lb), the subjects are asked to reach and touch the
target using the same stylus as described in Task I. The
difference is, once the target is reached, the subject is asked
to draw a line segment from the target center to any sub-
target marked along the inner circle of the target (Fig. 3(c),
23mm in diameter), every 45 degrees. Then the stylus goes
back to the center without drawing anything, and repeats
the drawing task to another sub-target until all eight sub-
targets are connected to the center. The subtasks are done
in the subject’s preferred order. The images drawn on the

(b) 0.3
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Fig. 4. A subject’s DMEs at 33 targets (far distance, x ~ 0.5m): (a) Okg,
3D view; (b) Okg, y-z view; (c) 2.72kg (61b), y-z view. In (b) and (c), small
circles show wrist positions, and DMEs’ y-z projections are in light gray
while DMEs’ cross-sections at x = 0.5m are in dark gray.

tablet are recorded and synchronized to a PC instantly via
OneNote (Microsoft, USA). In this way, each sub-task could
be studied individually even if visually overlap together. The
post-processing work on the images is done using MATLAB
(MathWorks, USA). All the procedures above have been
conducted twice to obtain averaged results.

IV. RESULTS & DISCUSSION

Four aspects of upper limb movement under loading
conditions are quantitatively analyzed and discussed: manip-
ulability, redundancy resolution (i.e., swivel angles), swivel
angles vs. APSI, and arm’s control performance.



A. Manipulability

First, to clearly demonstrate the effects of additional loads,
a subject’s kinematics data at 3x3 targets, far distance,
under two different loads of 0 and 2.72kg (= 0 and 6lb) is
processed and illustrated in Fig. 4. Increasing the load shrinks
ellipsoid size (manipulability measure), but also changes
axes orientation and center position. The results support the
intuition that an arm with additional loads would be more
difficult to move, especially in some directions.

B. Swivel Angles

Effects of loading on redundancy resolution could be
demonstrated by the change in swivel angles. Fig. 5 provides
the swivel angle data obtained from Task I, for all ten
subjects. Two 3x3 plots (a) and (b) illustrate the data at
far and close distances, respectively. Each subplot (a small
square) shows all ten subjects’ swivel angles at that specific
target, under three different loads of 0, 2.72, and 4.54kg (=
0, 6, and 101lb). Note that as shown in Fig. 3(a), the shoulder
position points to the center of 3x3 targets.

A linear regression analysis is performed in Fig. 5, and
it shows a consistent but counterintuitive trend at all target
positions that adding loads will increase swivel angles.
It means when adding loads, the elbow position will be
elevated. The authors’ conjecture is that as more effort is
made during the shoulder flexion, a multi-joint synergy is
activated.

Another observation from the data is the spatial hetero-
geneity of linear regression coefficients (slope and intercept)
which is detailed in Fig. 6. The swivel angles at the top-
right targets have the highest increasing rate (slope, deg/kg)
when adding loads (far: 3.91, close: 3.80), while the lowest
slope appears at the bottom-left (far: 0.84, close: 0.93). This
distribution in task space may be due to obstacle (human
body) collision avoidance: when wrist is at top-right target
the arm has much more swivel freedom than at bottom-left.

The other coefficient, intercept is actually the swivel angle
when no loading is applied. The top-left targets always have
the highest intercept (deg) (far: 30.37, close: 35.45), while
the lowest zero-load swivel angle for the far posture appears
at the top-right (13.06) but shifts to the middle-right for close
posture (13.63). This, similarly, could also be explained by
obstacle collision avoidance.

C. Swivel Angles vs. APSI

As pointed out in IV. B, adding loads will increase swivel
angles, but one may wonder if this change in swivel angle
necessarily indicates a more instable situation. This could be
explained by APSI. Fig. 7 illustrates the results from one
subject to show the relationship between swivel angle and
APSI. For each swivel angle measured, the corresponding
APSI is calculated and plotted as a “circle” o in (a) far or
a “diamond” ¢ in (b) close. As mentioned above, with one’s
wrist and shoulder fixed, the elbow could still move along a
circle by changing the swivel angle. The swivel angles in this
feasible range (but not actually chosen by the subject) and
the corresponding APSI values are plotted and connected as
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Fig. 5. Swivel angles of all ten subjects at 3x3 targets loaded with 0, 2.72
and 4.54kg: (a) far reach-out postures; (b) close reach-out postures. Cross
dots with same x value represent measured data from all ten subjects under
each load, and dotted lines show a 95% confidence boundary.
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Fig. 6. Linear regression analysis from Fig. 5 shows that the swivel angle
increasing rate (i.e., slope) is highest at top-right and lowest at bottom-left,
for both (a) far and (b) close reach-out postures; while the swivel angle
with no loading (i.e., intercept) is always at top-left.
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Fig. 7. Measured swivel angles at (a) far and (b) close reach-out postures
and calculated APSI have a high correlation, with large loads. In other
words, with large loads the swivel angle may work as a quantitative tool to
differentiate spatial targets in postural stability. As the load increases, the
average APSI decreases. Distribution of measured data at far distance is
more concentrated. Circles and diamonds are experimental data, lines are
computational data.

individual lines via each measured data point. Under each
loading condition, the R* value (the median of ten subjects’
in brackets) from linear regression of measured swivel angle
and corresponding APSI value are added to the plots.

Computationally, although both the swivel angle and its
corresponding APSI are calculated very nonlinearly, there is
a highly linear correlation between them, especially for far
reach-out postures. Experimentally, higher R”> values and a
more concentrated swivel angle distribution are observed in
the far reach-out posture than in the close one. Thus swivel
angles under loading conditions may work as an indicator of
the task difficulty.

D. Arm’s Control Performance

The goal of additional Task II is to find if APSI or swivel
angle could explain the arm’s control performance in tasks
where movement is involved.

Shown in Fig. 3(c), the root mean square (RMS) deviation
of each drawing stroke from the targeted path is calculated as

drys = \/(d12+d22+ +dn2)/n, where d; is the distance
between a sampled point on the stylus stroke and the targeted
path, n is the number of samples from target center to
subtask inner circle. The RMS values for eight subtasks are
averaged and its relationship with loads and distances are
shown in notched boxplots in Fig. 8, which provides the
data from three subjects who participated in Task II. It is
found that extra loads at the far reach-out posture result in
higher average RMS values of drawing deviation, indicating
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Fig. 8. Subject #1, #2 and #7: Drawing deviation (in averaged RMS value)
versus loading and distance, in notched boxplots. A higher averaged RMS
value indicates poorer arm’s control performance.
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Fig. 9. P-values vary in 3x3 targets and black squares mean p < 0.05:
(a) Load statistically influences arm control performance in most targets,
concentrated at top-left; (b) Distance statistically influences arm’s control
performance in four out of nine targets; (c) Difference in subjects changes
performance significantly in only two bottom-left targets.
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a deterioration of arm’s control performance. However, no
significant correlation is observed between arm’s control
performance and the proposed APSI, or swivel angles.

To further understand the information embedded in the
data, a three-way analysis of variance (ANOVA) is performed
and p-values are illustrated in Fig. 9, where p < 0.05 is
shown in black. Based on the three-way ANOVA, the p-
value distributions in Fig. 9 show that (a) load significantly
influences the performance in most targets, but (b) the
distance between the subject and target plane does not,
statistically, play a strong role in more than half of the targets.
This might be due to the human arm’s inherent tremor, when
no additional load is present. No significant difference is
observed among subjects, except at the bottom-left targets.
The authors consider that the possible arm-body collision
avoidance strategy dominates here.

E. Model Simplifications in the Study

In this study, for computational efficiency a dynamical
manipulability ellipsoid (DME) model was chosen although a



force polytope (FP) model that uses a hypercube joint torque
constraint may better describe the heterogeneity of arm
capabilities in space [23]. Also, since joint torque capabilities
change with joint angles, a q-dependent 7" matrix might be
more accurate [7].

V. CONCLUSION & FUTURE APPLICATIONS

In this paper, the human arm redundancy resolution under
gravitational loading conditions is quantitatively studied. Ad-
ditional loading does change the arm’s movement in several
aspects like manipulability and redundancy resolution strat-
egy. A new scalar index describing the arm postural stability
(APSI) is proposed and the authors conjecture that swivel
angle may work as an indicator of the arm postural stability
and task difficulty. The load-induced effects observed in
this study may lend important referential information for
designing force and position controllers of redundant robotic
exoskeleton systems used for resistance rehabilitation train-
ing and assist-as-needed gravity compensation. The model
and findings may also be extended to general humanoid
research and applications including human-like motion con-
troller design.

APPENDIX

For readers’ reference, each entry of the Jacobian matrix
J3x4 is provided below.

J11 =s1e3s4Ly — c15253s4Ly — c1c2Ly — clc2c¢4L,  (13)

Ji2 = —s1c2s3s4Ly + s1s2L1 + s1s2¢4L, (14)
J13 = cls3s4L, — s152¢3s4L, (15)

Ji1a = —clc3cdly — s152s3¢4L, + s1c2s4L, (16)
Jj21=0 (17)

Joo = $253s4Ly + 2Ly + c2c4L,

(18)
j23 = 7C‘2C3S4L2 (19)
Joa = —c253c4L, — 52541, (20)

J31 = s1s2s3s4Ly +clc3s4Ly +s1c2L; +s1c2c4L,  (21)

Jaz = —clc2s3s4Ly +c1s2L1 + c1s2c4L, (22)
J33 = —cls2c3s4L, — s153s4L, (23)
jaa = —cls2s3c4L, +s1c3c4ly +clc2s4L, (24)
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